Engelskt namn: Calculus in One Variable 2
Denna kursplan gäller: 2023-08-28 och tillsvidare
Kursplan för kurser med start efter 2023-08-28
Kurskod: 6MA046
Högskolepoäng: 7,5
Utbildningsnivå: Grundnivå
Huvudområden och successiv fördjupning:
Matematik: Grundnivå, har mindre än 60 hp kurs/er på grundnivå som förkunskapskrav
Betygsskala: Tregradig skala
Ansvarig institution: Institutionen för matematik och matematisk statistik
Beslutad av: Teknisk-naturvetenskapliga fakultetsnämnden, 2018-10-04
Reviderad av: Teknisk-naturvetenskapliga fakultetsnämnden, 2023-03-09
Moment 1 (6,5 hp): Matematisk teori för funktioner av en variabel
I momentet introduceras först teori för Riemannintegralen och dess grundläggande egenskaper. Integralen tolkas geometriskt som arean av ytan under en positiv funktionskurva. Integralkalkylens fundamentalsats och medelvärdessats behandlas och olika metoder för att evaluera integraler behandlas, särskilt variabelsubstitution och partiell integration. Begreppet generaliserad integral som ett gränsvärde av bestämd integral införs här.
Flera olika tillämpningar av integralbegreppet behandlas, som rotationsvolym, båglängd samt separabla och första ordningens linjära differentialekvationer. Begreppet parametrisk kurva definieras, och formeln för längden av parametriska kurvor ges som en generalisering av formeln för båglängd av funktionskurvor.
Som en andra huvuddel av momentet introduceras begreppet talföljd, och några centrala satser för talföljder behandlas. Med detta som grund definieras sedan begreppet konvergent serie. Nödvändiga och tillräckliga villkor för konvergens av serier utreds. Slutligen introduceras potensserier och begreppet Taylorserie. Några centrala satser i samband med detta behandlas, och tillämpas vid approximation av funktioner och bestämning av gränsvärden.
Moment 2 (1 hp): Datorlaborationer
I momentet behandlas numeriska approximationer med hjälp av datorstödda beräkningar.
För godkänd kurs ska den studerande kunna
Kunskap och förståelse
Färdighet och förmåga
Värderingsförmåga och förhållningssätt
För tillträde till kursen krävs en kurs i matematisk analys omfattande minst 7,5 hp eller motsvarande.
Undervisningen bedrivs i huvudsak i form av föreläsningar och lektionsundervisning samt handledning av datorlaborationer.
Examinationen på moment 1 sker genom skriftliga prov. Examinationen på moment 2 sker genom skriftlig laborationsrapport. På moment 1 sätts något av omdömena Underkänd (U), Godkänd (G) eller Väl godkänd (VG). På moment 2 sätts endast omdömet Underkänd (U) eller Godkänd (G). På hela kursen ges något av betygen Underkänd (U), Godkänd (G) eller Väl godkänd (VG). För att bli godkänd på hela kursen krävs att samtliga moment är godkända. Betyget på kurs avgörs av omdömet på moment 1.
Den som godkänts i prov får ej undergå förnyat prov för högre betyg. Ett omprov ska erbjudas senast två månader efter ordinarie provtillfälle, dock ska omprov erbjudas tidigast tio arbetsdagar efter det att resultatet av det ordinarie provet har meddelats och kopia av studentens tentamen är tillgänglig. Dessutom skall minst ytterligare ett omprov erbjudas inom ett år från ordinarie provtillfälle, s.k. uppsamlingsprov. I de fall prov eller obligatoriska undervisningsmoment inte kan upprepas enligt gällande regler för omprov och ompraktik kan det istället ersättas med annan uppgift. Omfattningen av och innehållet i sådan uppgift skall stå i rimlig proportion till det missade obligatoriska momentet.
En student som utan godkänt resultat har genomgått två prov för en kurs eller en del av en kurs, har rätt att få en annan examinator utsedd, om inte särskilda skäl talar emot det (HF 6 kap. 22 §). Begäran om ny examinator ställs till prefekten för institutionen för matematik och matematisk statistik. Examination baserad på denna kursplan garanteras under två år efter studentens förstagångsregistrering på kursen.
Examinator kan besluta om avsteg från kursplanens examinationsform. Individuell anpassning av examinationsformen ska övervägas utifrån studentens behov. Examinationsformen anpassas inom ramen för kursplanens förväntade studieresultat. Student som har behov av en anpassad examination ska senast 10 dagar innan examinationen begära anpassning hos kursansvarig institution. Examinator beslutar om anpassad examination som sedan meddelas studenten.
Tillgodoräknande
Student har rätt att få prövat om tidigare utbildning eller motsvarande kunskaper och färdigheter förvärvade i yrkesverksamhet kan tillgodoräknas för motsvarande utbildning vid Umeå universitet. Ansökan om tillgodoräknande skickas in till Studentcentrum/Examina. Mer information om tillgodoräknande finns på Umeå universitets studentwebb, www.student.umu.se, och i högskoleförordningen (6 kap). Ett avslag på ansökan om tillgodoräknande kan överklagas (Högskoleförordningen 12 kap) till Överklagandenämnden för högskolan. Detta gäller såväl om hela som delar av ansökan om tillgodoräknande avslås.
I en examen får denna kurs ej ingå tillsammans med en annan kurs med likartat innehåll. Vid osäkerhet bör den studerande rådfråga studierektorn i matematik och matematisk statistik.
I det fall att kursplan upphör att gälla eller genomgår större förändringar, garanteras studenter minst tre provtillfällen (inklusive ordinarie provtillfälle) enligt föreskrifterna i den kursplan som studenten ursprungligen varit kursregistrerad på under en tid av maximalt två år från det att tidigare kursplan upphört att gälla eller att kursen slutat ges.
Calculus : a complete course
Adams Robert A., Essex Christopher
Tenth edition. : Toronto : Pearson : 2021 : pages cm :
ISBN: 9780135732588
Obligatorisk
Se Umeå UB:s söktjänst