Engelskt namn: Design of interactive intelligent environments
Denna kursplan gäller: 2020-01-06 och tillsvidare
Kursplan för kurser med start efter 2020-01-06
Kurskod: 5DV195
Högskolepoäng: 7,5
Utbildningsnivå: Avancerad nivå
Huvudområden och successiv fördjupning:
Datavetenskap: Avancerad nivå, har kurs/er på avancerad nivå som förkunskapskrav
Betygsskala: Med beröm godkänd, icke utan beröm godkänd, godkänd, väl godkänd, godkänd, underkänd
Ansvarig institution: Institutionen för datavetenskap
Beslutad av: Teknisk-naturvetenskapliga fakultetsnämnden, 2019-11-08
Reviderad av: Teknisk-naturvetenskapliga fakultetsnämnden, 2021-01-13
Denna kurs på avancerad nivå syftar till att fördjupa kunskaper och färdigheter i designmetodik för ansvarsfull utveckling av interaktiva system och miljöer baserade på artificiell intelligens (AI), i teorier for människa-datorinteraktion och ny teknologi för att interagera och samarbeta med intelligenta mjukvaruagenter och miljöer. Kursen bygger på forskning och teoribildning i gränssnittet mellan AI och MDI, med särskilt fokus på socio-tekniska system som innefattar AI, människa-AI-samarbete och relaterade etiska och sociala aspekter. Några centrala frågeställningar som kommer att behandlas under kursen är följande:
Kursen är indelad i följande två delar:
Modul 1: Teori och metod (4.5 hp)
Den teoretiska delen tar upp teoretiska ramverk och metoder för att designa och utvärdera interaktiva, intelligenta system och antar ett ansvarsfullt perspektiv på design av AI-baserade system. Det socio-tekniska systemperspektivet kommer att tillämpas genomgående med teoribildning som stödjer utveckling av socialt intelligenta system. Det innefattar människo-centrerade faktorer som är vitala vid design av AI-baserade interaktiva system, såsom effekter av användning, mekanismer för människans utveckling, motivation, beteendeförändring, autonomi, empowerment, kompetens, relevans, värde för individ och samhälle, ansvar och etiska aspekter.
Metodik innefattar särskilt ansvarsfull AI-design, deltagande aktionsforskningsmetodik, aktivitetscentrerad design. Teorier och metoder appliceras i gruppövningar och i interdisciplinära projektarbeten i modul 2.
Modul 2: Praktisk tillämpning av teori och metod i ett projektarbete (3.0 hp)
Teorier och metoder som tas upp i Moment 1 appliceras i ett projekt som genomförs parallellt med den teoretiska delen. Projektet motiveras av en samhällsutmaning och fokuserar på att engagera möjliga slutanvändare och andra intressenter i en interdisciplinär deltagande-designprocess. Designaktiviteter kan ske i labb med teknologi och material för prototyputveckling och utvärdering och i miljöer utanför universitetet som intressenter tillhandahåller.
Kunskap och förståelse
Efter avslutad kurs ska studenten kunna:
Färdighet och förmåga
Efter avslutad kurs ska studenten kunna:
Värderingar och förhållningssätt
Efter avslutad kurs ska studenten kunna:
Univ:För tillträde till kursen krävs 90 hp avklarade studier varav 60 hp i huvudområdet datavetenskap eller 2 års avklarade studier (120hp) inom ett studieprogram. I båda fallen inkluderande antingen kursen Interaktivitet i smarta miljöer (5DV185) eller kursen Kognitiv interaktionsdesign (5DV190) eller motsvarande kunskaper. En avlagd kandidatexamen med kognitionsvetenskap som huvudämne anses vara motsvarande kunskaper.
Svenska för grundläggande behörighet för högskolestudier samt Engelska A/5. Krav på svenska gäller endast om utbildningen ges på svenska.
Kursen består av föreläsningar, projektarbete i datorsalar och andra miljöer samt övningar i mindre grupper. Delar av undervisningen kräver obligatorisk närvaro. Utöver det schemalagda arbetet krävs också individuellt arbete med materialet.
Modul 1 examineras genom en skriftlig salstentamen och omfattar primärt FSR 1-3 och 8-9. På denna modul ges något av betygen Underkänd (U), Godkänd (3), Icke utan beröm godkänd (4) eller Med beröm godkänd (5). För studerande som inte godkänns vid ordinarie provtillfälle anordnas ytterligare provtillfällen.
Modul 2 examineras genom ett projekt som antingen utförs individuellt eller i grupp enligt anvisningar som ges under kursen, som omfattar primärt FSR 4-9. Delar av projektarbetet kan bestå av fältstudier utanför universitetet i samarbete med näringsliv och/eller offentlig sektor och möten under projekttiden kan ske på plats hos en sådan organisation. I denna modul finns examinerande inslag som kräver obligatorisk närvaro som exempelvis fältstudier, examinerande projektmöten och presentation/demonstration av projektet. På denna modul ges något av betygen Underkänd (U) eller Godkänd (G).
En student som underkänts på modul 2 men som regelbundet deltagit i en majoritet av projektaktiviteterna kan få en omexamination som täcker de delar som studenten har missat. Om en student varit helt inaktiv eller missat en majoritet av projektaktiviteterna så kan studenten examineras på modul 2 vid nästa kurstillfälle. Studenten har dock inte rättighet att fortsätta med samma projektarbete som vid ordinarie examination utan kommer få starta om projektet i samarbete med en ny studentgrupp och med ett nytt ämne.
På kursen som helhet ges något av betygen Underkänd (U), Godkänd (3), Icke utan beröm godkänd (4) eller Med beröm godkänd (5). Betygets sätts först när de båda modulerna är godkända och modul 1 styr kursens betyg.
Studerande som godkänts i ett prov får inte undergå förnyat prov för att få ett högre betyg.
För studerande som inte godkänns vid ordinarie provtillfälle anordnas ytterligare provtillfällen. En student som utan godkänt resultat har genomgått två prov för en kurs eller en del av en kurs, har rätt att få en annan examinator utsedd, om inte särskilda skäl talar emot det (HF 6 kap. 22 §). Begäran om ny examinator ställs till prefekten för Institutionen för datavetenskap.
Examination baserad på denna kursplan garanteras under två år efter studentens förstagångsregistrering på kursen. Detta gäller även om kursen lagts ned och denna kursplan upphört gälla.
Avsteg från kursplanens examinationsform kan göras för en student som har beslut om pedagogiskt stöd på grund av funktionsnedsättning. Individuell anpassning av examinationsformen ska övervägas utifrån studentens behov. Examinationsformen anpassas inom ramen för kursplanens förväntade studieresultat. Efter begäran av studenten ska kursansvarig lärare, i samråd med examinator, skyndsamt besluta om anpassad examinationsform. Beslutet ska sedan meddelas studenten.
TILLGODORÄKNANDE
Student har rätt att få prövat om tidigare utbildning eller motsvarande kunskaper och färdigheter förvärvade i yrkesverksamhet kan tillgodoräknas för motsvarande utbildning vid Umeå universitet. Ansökan om tillgodoräknande skickas in till Studentcentrum/Examina. Mer information om tillgodoräknande finns på Umeå universitets studentwebb, www.student.umu.se, och i högskoleförordningen (6 kap). Ett avslag på ansökan om tillgodoräknande kan överklagas (Högskoleförordningen 12 kap) till Överklagandenämnden för högskolan. Detta gäller såväl om hela som delar av ansökan om tillgodoräknande avslås.
I en examen får denna kurs ej ingå, helt eller delvis, samtidigt med en annan kurs med likartat innehåll. Vid tveksamheter bör den studerande rådfråga studievägledare vid Institutionen för datavetenskap och/eller programansvarig för sitt program.
Litteraturlistan är inte tillgänglig via den webbaserade utbildningskatalogen. Kontakta aktuell institution.