Engelskt namn: Project course in Machine Vision
Denna kursplan gäller: 2024-01-01 till 2025-03-23 (nyare version av kursplanen finns)
Kursplan för kurser med start efter 2025-03-24
Kursplan för kurser med start mellan 2024-01-01 och 2025-03-23
Kurskod: 5DV190
Högskolepoäng: 7,5
Utbildningsnivå: Avancerad nivå
Huvudområden och successiv fördjupning:
Datavetenskap: Avancerad nivå, har kurs/er på avancerad nivå som förkunskapskrav
Beräkningsteknik: Avancerad nivå, har kurs/er på avancerad nivå som förkunskapskrav
Betygsskala: Med beröm godkänd, icke utan beröm godkänd, godkänd, väl godkänd, godkänd, underkänd
Ansvarig institution: Institutionen för datavetenskap
Beslutad av: Teknisk-naturvetenskapliga fakultetsnämnden, 2018-03-19
Reviderad av: Teknisk-naturvetenskapliga fakultetsnämnden, 2023-06-19
Kursen behandlar en tillämpning inom något eller några av teoriområdena bildanalys, 3D-rekonstruktion och/eller mönsterigenkänning. De relevanta ämnesområdena samt teori kring en projektstyrningsmodell, exempelvis Scrum, introduceras inledningsvis. Därefter vidtar ett större programutvecklingsprojekt. Utformningen av projektet varierar mellan åren. Exempel på tänkbara projekt är:
Kunskap och förståelse
Efter avslutad kurs ska studenten kunna:
Färdighet och förmåga
Efter avslutad kurs ska studenten kunna:
Värderingsförmåga och förhållningssätt
Efter avslutad kurs ska studenten kunna
Minst 90 hp varav 60 hp datavetenskap eller 120 hp inom ett program. Minst 7,5 hp programmering; 7,5 hp linjär algebra; 7,5 hp differentialkalkyl (t.ex. 5MA153 eller 5MA197); och 7,5 hp statistik. Engelska för grundläggande behörighet för högskolestudier.
Kursen inleds med introduktion i form av föreläsningar till de för projektet relavanta ämnesområdena samt projektstyrningsmodellen. Därefter vidtar ett större programmeringsprojekt som är centralt på denna kurs. Syftet är att få erfarenhet av att jobba i utvecklingsteam från en vagt formulerad beställning och jobba fram en fungerande prototyp samt att självständigt och i grupp inhämta kunskap nödvändig för uppgiften. Arbetet organiseras i huvudsak enligt någon agil utvecklingmodell, exempelvis Scrum. Arbetet innefattar små och stora grupparbeten samt fördjupningsstudier.
Kursen examineras genom en skriftlig redovisning av studentens insats i projektet, huvudsakligen i form av en tidlogg (FSR 3, 8), samt en skriftlig slutrapportering i form av en hemtentamen (FSR 1-2, 4-8). Då det praktiska arbetet i grupp i projektform är centralt för kursen är huvuddelen av närvaron på det praktiska arbetet obligatorisk.
På kursen sätts något av betygen U, Godkänd (3), Icke utan beröm godkänd (4) eller Med beröm godkänd (5).
Kursbetyget utgör en sammanfattande bedömning av examinationens två delar.
Anpassad examination
Examinator kan besluta om avsteg från kursplanens examinationsform. Individuell anpassning av examinationsformen ska övervägas utifrån studentens behov. Examinationsformen anpassas inom ramen för kursplanens förväntade studieresultat. Student som har behov av en anpassad examination ska senast 10 dagar innan examinationen begära anpassning hos Institutionen för datavetenskap. Examinator beslutar om anpassad examination som sedan meddelas studenten.
I en examen får denna kurs ej ingå, helt eller delvis, samtidigt med en annan kurs med likartat innehåll. Vid tveksamheter bör den studerande rådfråga studievägledare vid Institutionen för datavetenskap och/eller programansvarig för sitt program.
Om kursplanen har upphört att gälla eller kursen slutat erbjudas garanteras en student som någon gång registrerats på kursen minst tre provtillfällen (inklusive ordinarie provtillfälle) enligt denna kursplan under en tid av maximalt två år från det att kursplanen upphört att gälla eller kursen slutat erbjudas.
Väljs i samråd med kursansvarig utifrån individuell frågeställning.
The litterature is chosen, together with the teacher responsible for the course, to best fit to the chosed research question. :
Obligatorisk