"False"
Hoppa direkt till innehållet
printicon
Huvudmenyn dold.
Kursplan:

Differentialekvationer och flervariabelanalys, 7,5 hp

Engelskt namn: Differential Equations and Multivariable Calculus

Denna kursplan gäller: 2024-01-15 och tillsvidare

Kurskod: 6MA058

Högskolepoäng: 7,5

Utbildningsnivå: Grundnivå

Huvudområden och successiv fördjupning: Matematik: Grundnivå, har mindre än 60 hp kurs/er på grundnivå som förkunskapskrav

Betygsskala: Väl godkänd, godkänd, underkänd

Beslutad av: Teknisk-naturvetenskapliga fakultetsnämnden, 2021-02-03

Reviderad av: Teknisk-naturvetenskapliga fakultetsnämnden, 2023-09-13

Innehåll

Modul 1 (6.5 hp): Teori
Kursen omfattar två huvudsakliga områden: differentialekvationer och flervariabelanalys. Inom området differentialekvationer behandlas ordinära differentialekvationer av första ordningen, linjära differentialekvationer av högre ordning, system av linjära differentialekvationer, samt relevanta tillämpningar. Här ingår klassificering av differentialekvationer samt bevis av existens och entydighet av lösningar. Både analytiska och numeriska lösningsmetoder studeras, inklusive serielösningar. Dessutom ingår kvalitativ analys av lösningar till differentialekvationer och begreppen fasplan och stabilitet. Inom området flervariabelanalys studeras begreppen partiell derivata, gradient, dubbelintegral, samt några tillämpningar av dessa i form av bland annat optimeringsproblem och volymberäkningar.

Modul 2 (1 hp): Laborationer
Modulen behandlar tillämpade problem med stöd av digitala verktyg och programmering.

Förväntade studieresultat

För godkänd kurs ska den studerande kunna

Kunskap och förståelse

  • redogöra för begreppen differentialekvation och system av differentialekvationer, med några relevanta tillämpningar
  • redogöra för begreppen funktionsyta, partiell derivata, tangentplan, gradient och riktningsderivata
  • redogöra för begreppet itererad integral och hur detta används vid volymberäkningar

Färdighet och förmåga

  • klassificera differentialekvationer och lösa olika typer av ordinära differentialekvationer, inklusive med hjälp av serieansättningar
  • använda numeriska metoder för att approximera lösningar till differentialekvationer
  • lösa system av linjära differentialekvationer med egenvärdesmetoden
  • utföra beräkningar inom differentialkalkyl i flera variabler
  • lösa optimeringsproblem i flera variabler
  • utföra beräkningar inom integralkalkyl i flera variabler
  • använda digitala verktyg och programmering för att lösa tillämpade problem och kommunicera resultaten skriftligt

Värderingsförmåga och förhållningssätt

  • kritiskt granska egna eller andras matematiska resonemang
  • utvärdera uppställda modeller för tillämpade problem

Behörighetskrav

För tillträde till kursen krävs 22,5 hp matematik, inkluderande en kurs i differentialkalkyl, en kurs i integralkalkyl och en kurs i linjär algebra eller motsvarande kunskaper

Undervisningens upplägg

Undervisningen på modul 1 bedrivs i huvudsak i form av föreläsningar och lektionsundervisning. Undervisningen på modul 2 bedrivs i form av introducerande föreläsning och handledning.

Examination

Examinationen på modul 1 sker genom skriftliga prov och ges något av omdömena Underkänd (U), Godkänd (G) eller Väl godkänd (VG). Examinationen på modul 2 sker genom skriftlig laborationsrapport och ges något av omdömena Underkänd (U) eller Godkänd (G). För att bli godkänd på kursen krävs att samtliga examinerande delar är godkända och betyget bestäms av omdömet på modul 1. På hel kurs ges något av betygen Underkänd (U), Godkänd (G) eller Väl godkänd (VG).

Examinator kan besluta om avsteg från kursplanens examinationsform. Individuell anpassning av examinationsformen ska övervägas utifrån studentens behov. Examinationsformen anpassas inom ramen för kursplanens förväntade studieresultat. Student som har behov av en anpassad examination ska senast 10 dagar innan examinationen begära anpassning hos kursansvarig institution. Examinator beslutar om anpassad examination som sedan meddelas studenten.

Ett omprov ska erbjudas senast två månader efter ordinarie provtillfälle, dock ska omprov erbjudas tidigast tio arbetsdagar efter det att resultatet av det ordinarie provet har meddelats och kopia av studentens tentamen är tillgänglig. Dessutom skall minst ett ytterligare omprov erbjudas inom ett år från ordinarie provtillfälle, så kallat uppsamlingsprov. I de fall då prov eller obligatoriska undervisningsmoment inte kan upprepas enligt gällande regler för omprov och ompraktik kan det istället ersättas med annan uppgift. Omfattningen av och innehållet i sådan uppgift skall stå i rimlig proportion till det missade obligatoriska momentet.

En student som utan godkänt resultat har genomgått två prov för en kurs eller en del av en kurs, har rätt att få en annan examinator utsedd, om inte särskilda skäl talar emot det (HF 6 kap. 22 §). Begäran om ny examinator ställs till prefekten för institutionen för matematik och matematisk statistik.

Tillgodoräknande
Student har rätt att få prövat om tidigare utbildning eller motsvarande kunskaper och färdigheter förvärvade i yrkesverksamhet kan tillgodoräknas för motsvarande utbildning vid Umeå universitet. Ansökan om tillgodoräknande skickas in till Studentcentrum/Examina. Mer information om tillgodoräknande finns på Umeå universitets studentwebb, www.student.umu.se, och i högskoleförordningen (6 kap). Ett avslag på ansökan om tillgodoräknande kan överklagas (Högskoleförordningen 12 kap) till Överklagandenämnden för högskolan. Detta gäller såväl om hela som delar av ansökan om tillgodoräknande avslås.

Övriga föreskrifter

I en examen får denna kurs ej ingå tillsammans med en annan kurs med likartat innehåll. Vid osäkerhet bör den studerande rådfråga studierektorn i matematik och matematisk statistik.



I de fall kursplanen upphör att gälla eller genomgår större förändringar erbjuds minst tre provtillfällen (inklusive ordinarie provtillfälle) enligt föreskrifterna i den ändrade eller nedlagda kursplanen.

Litteratur

Giltig från: 2024 vecka 12

Calculus : a complete course
Adams Robert A., Essex Christopher
Tenth edition. : Toronto : Pearson : 2021 : pages cm :
ISBN: 9780135732588
Obligatorisk
Se Umeå UB:s söktjänst