Björklöv som råmaterial för tillverkning av organiska halvledare
NYHET
För att tillverka halvledare till optoelektroniska tillämpningar, exempelvis OLEDs för supertunna tv- och mobiltelefonskärmar, används i dag oftast petrokemiska föreningar och sällsynta metaller som platina och iridium. Fysiker vid Umeå universitet i samarbete med forskare i Danmark och Kina har därför utvecklat ett mer hållbart alternativ. Genom att tryckkoka björklöv, plockade på Umeå universitets campus, har de lyckats ta fram kolbaserade partiklar i nanostorlek med rätt optiska egenskaper.
Forskarna plockade björklöv på campus, tryckkokade dem och fick fram kolbaserade partiklar som kan användas som råmaterial i organiska halvledare.
BildMattias Pettersson
– Kärnan i vår forskning är att utnyttja närliggande förnybara resurser för organiska halvledarmaterial, säger Jia Wang, forskare vid Institutionen för fysik, Umeå och universitet, och en av författarna bakom studien vars resultat har publicerats i Green Chemistry.
Organiska halvledare är ett av de viktigaste funktionella materialen i optoelektroniska tillämpningar. Ett exempel är i organiska lysdioder, OLED, som möjliggör ultratunna och ljusstarka tv- och mobiltelefonskärmar. En kraftigt ökande efterfrågan på denna avancerade teknik driver på en massiv produktion av organiska halvledarmaterial.
Dessvärre framställs dessa halvledare i dag främst av petrokemiska föreningar och sällsynta grundämnen, som tagits fram genom miljöskadlig gruvdrift. Dessutom innehåller dessa halvledare ofta så kallade ”kritiska råvaror” som det råder brist på, till exempel platina, indium och fosfor.
Jia Wang.
BildMattias Petterson
Ur hållbarhetssynpunkt skulle det i stället vara idealt att kunna använda biomassa från växter, djur och avfall för att framställa organiska halvledarmaterial. Detta är råmaterial som är förnybara och som det dessutom finns riklig tillgång på. Forskaren Jia Wang och hennes medarbetare vid Institutionen för fysik har tillsammans med internationella samarbetspartners lyckats framställa ett sådant biobaserat halvledarmaterial.
Björklöv tryckkokades
Tillverkningsprocessen är enkel: forskarna plockade björklöv på campusområdet i Umeå och kokade dem i en tryckkokare. De fick då fram en slags ”kolprickar” som är cirka två nanometer stora, och som avger ett djuprött ljus när de löses upp i etanol. Några av de optiska egenskaperna hos dessa kolprickar, tillverkade från björklöv, är jämförbara med kommersiella kvantprickar som i används dag. Men till skillnad från dem innehåller kolprickarna inga tungmetaller eller kritiska råmaterial.
– Det är viktigt att notera att vår metod inte är begränsad till björklöv, förklarar Jia Wang. Vi testade olika växtblad med samma tryckkokningsmetod, och alla gav upphov till liknande rödemitterande kolprickar. Denna mångsidighet tyder på att omvandlingsprocessen kan användas på olika platser med olika tillgång på råmaterial.
Det är viktigt att notera att vår metod inte är begränsad till björklöv
Genom att använda kolprickarna i en ljusemitterande elektrokemisk cell, LEC, kunde forskarna visa att ljusstyrkan som genererades var 100 cd/m2, vilket är jämförbart med ljusintensiteten från en datorskärm.
Kolprickslösningar avger olika typer av luminiscens vid UV-belysning. Alla kolprickar på bilden har syntetiserats i Jia Wangs forskningslaboratorium.
BildJia Wang
– Detta resultat visar att det är möjligt att övergå från fossila petroleumföreningar till förnybar biomassa som råmaterial för organiska halvledare, säger Jia Wang.
Hon betonar den bredare potentialen hos kolprickar bortom enbart ljusemitterande enheter.
– Kolprickar är lovande för många olika tillämpningar, från bioimaging och sensorer till förfalskningsskydd. Vi är öppna för samarbeten och ivriga att utforska fler spännande användningsområden för våra emitterande och hållbara kolprickar, säger Jia Wang.
Om studien Shi Tang, Yongfeng Liu, Henry Opoku, Märta Gregorsson, Peijuan Zhang, Etienne Auroux, Dongfeng Dang, Anja-VerenaMudring, Thomas Wågberg, Ludvig Edman, Jia Wang, Fluorescent carbon dots from birch leaves for sustainable electroluminescent devices, Green Chemistry, Royal Society of Chemistry, November 2023, DOI: 10.1039/d3gc03827k