Solution 1. Let n be an integer. Note that for any $x \in \mathbb{R}$, we have $\lfloor x+n\rfloor=\lfloor x\rfloor+n$. Indeed, this standard property follows from the fact that as $m=\lfloor x\rfloor$ is the unique integer chosen so that $m \leq x<m+1$, we also have $m+n \leq x+n<m+n+1$, thus implying that $m+n$ is the unique such integer for $x+n$.

Using this observation, we note that $\{x+n\}=\{x\}$ for any $x \in \mathbb{R}$ and $n \in \mathbb{Z}$, and hence we also have $\{(x+n)+(y+m)\}=\{x+y\}$ and $\{x+n\} \cdot\{y+m\}=\{x\}\{y\}$. Thus (x, y) is a solution for the equation if and only if $(x+n, y+m)$ is a solution for the equation for all integers $n, m \in \mathbb{Z}$. In particular, by choosing $n=-\lfloor x\rfloor$ and $m=-\lfloor y\rfloor$, it suffices to find those solutions (x, y) with $0 \leq x<1$ and $0 \leq y<1$. The advantage is that for these choices of x and y we have $\lfloor x\rfloor=0$, so $\{x\}$ is simply x, while $0 \leq x+y<2$, so $\{x+y\}$ is either $x+y$ or $x+y-1$.

First suppose that $(x, y) \in[0,1) \times[0,1)$ is a solution for which we have $0 \leq x+y<1$. Then the original equation $\{x+y\}=\{x\} \cdot\{y\}$ can be written as $x+y=x y$, which again can be written as $(1-x)(1-y)=1$. Since $x, y \in[0,1)$, we have $0<1-x \leq 1$ and $0<1-y \leq 1$, which implies that $(1-x)(1-y) \leq 1$. Since the equality must hold, we need both $1-x$ and $1-y$ to be 1 , that is we need $x=y=0$. Thus the only solution when $0 \leq x+y<1$ is $x=y=0$.

Now suppose that $1 \leq x+y<2$. Then the original equation can be written as $x+y-1=$ $x y$, which simplifies to $(x-1)(y-1)=0$. Thus we must have $x-1=0$ or $y-1=0$, both of which are impossible as we are assuming that $0 \leq x<1$ and $0 \leq y<1$. Thus there are no solutions in this case.

Hence the only solution (x, y) satisfying the additional condition $0 \leq x<1$ and $0 \leq y<1$ is $x=y=0$. Since we observed that (x, y) is a solution if and only if $(x+n, y+m)$ is a solution for all integers m and n, we conclude that the whole solution set is those pairs (x, y) so that both x and y are integers.

Solution 2. First we recall some standard rules for divisibility. Let $N=\overline{a_{1} \ldots a_{n}}$ denote a n-digit number (written as usually in base 10, i.e. $a_{i} \in\{0,1, \ldots, 9\}$ and $N=a_{n}+10 a_{n-1}+$ $\cdots+10^{n-1} a_{1}$). Then N is divisible by 3 if and only if the sum of its digits, i.e. $a_{1}+a_{2}+\cdots+a_{n}$ is divisible by 3 . The same statement also holds when 3 is replaced with 9 , but we don't need it in this problem. In addition, N is divisible by 11 if and only if the alternating sum of its digits $a_{1}-a_{2}+a_{3}-a_{4}+\cdots+(-1)^{n-1} a_{n}$ is divisible by 11 .

Note that $132=3 \cdot 4 \cdot 11$. Since 3,4 and 11 are pairwise coprime (do not have any common factors apart from 1), an integer N is divisible by 132 if and only if N is divisible by $3, N$ is divisible by 4 and N is divisible by 11 . Note that one has to be a bit careful here: even though say $24=4 \cdot 6$, an integer N can be divisible by 4 and 6 without being divisible by 24 (say, 12) - but of course here the problem is that 4 and 6 share 2 as a common factor.

Let $N=\overline{a_{1} \ldots a_{n}}$ denote the least such number with $a_{i} \in\{2,3\}$ for every i. By checking small cases, it is not too hard to conclude that $N=23232$ satisfies the conditions (indeed, it is clearly divisible by 4 , the sum of digits is 12 which is divisible by 3 and the alternating sum of digits is 0 which is divisible by 11). Thus we may assume that the smallest N has at most 5 digits.

Let A denote the sum of digits with odd index (those of a_{1}, a_{3}, a_{5}, depending on how many digits N has) and let B denote the sum of digits with even index (a_{2} and a_{4}). Then we know that 3 must divide $A+B$ and 11 must divide $A-B$. Since $0 \leq A \leq 3 \cdot 3=9$ and
$0 \leq B \leq 2 \cdot 3=6$, we conclude that $-6 \leq A-B \leq 9$. Since $A-B$ is divisible by 11 , the only possibility is to have $A-B=0$, i.e. $A=B$. But then $A+B=2 A$, and since 2 and 3 do not have any common factors apart from $1, A$ must be divisible by 3 and similarly B must be divisible by 3 .

If N had at most 4 digits, then both A and B will be sums of at most 2 digits that are 2 or 3 . The divisibility of such a sum clearly depends only on the number of 2 's in it: the number of 2 's needs to be divisible by 3 . But since both sums contain only at most 2 digits, the only way such a situation can be achieved is by taking no 2 's at all to either sets. This in turn implies that all digits are $3^{\prime} s$, whence N is clearly odd integer and thus not divisible by 4 .

Now suppose N has 5 digits. Since B contains only 2 digits, by the previous argument both of them must be 3 's. Now A contains 3 digits whose sum is divisible by 3 , and again not all of them can be 3's. Thus at least one of them must be 2 , and hence at least 3 of them must be 2's, whence all of them must be 2's. Hence we end up with the number $N=23232$, which we know to satisfy these properties.

Finally, observe the simple fact that if N has at least 6 digits, then regardless of their choices, we must have $N>23232$, thus proving that 23232 is the smallest such integer.

Solution 3. Apllying the law of sines to the triangle $A B C$ implies that

$$
\begin{equation*}
\frac{B C}{\sin (\angle B A C)}=\frac{A B}{\sin (\angle A C B)} \tag{1}
\end{equation*}
$$

Since $\angle E B A=90^{\circ}$, we have

$$
\begin{equation*}
A B=\cos (\angle B A C) \cdot A E \tag{2}
\end{equation*}
$$

Substituting the value of $A B$ from (2) into (1), and using the fact that $A E=2 \cdot B C$, we obtain

$$
\frac{B C}{\sin (\angle B A C)}=\frac{A B}{\sin (\angle A C B)}=2 \frac{\cos (\angle B A C) B C}{\sin (\angle A C B)}
$$

which simplifies to $\sin (\angle A C B)=2 \cos (\angle B A C) \cdot \sin (\angle B A C)=\sin (2 \angle B A C)$. Since both of these angles are between 0° and 180°, it follows that $\angle A C B=2 \angle B A C$ or $\angle A C B+2 \angle B A C=$ 180°. Our aim is to rule out the second option.

Suppose we have $\angle A C B+2 \angle B A C=180^{\circ}$. Since the sum of the angles of triangle is 180°, it follows that $\angle C B A=\angle B A C$ by considering the triangle $A B C$. Thus we must have $B C=A C$, which in turn implies that $B C=A C>A E=2 \cdot B C$. This is clearly a contradiction, so we must have $\angle A C B=2 \angle B A C$. Thus the diagonal $A C$ divides the angle $\angle A C B$ and hence also the angle $\angle B D A$ in 2:1 ratio.

