
Solution 1. Let n be an integer. Note that for any x ∈ R, we have bx + nc = bxc + n. 
Indeed, this standard property follows from the fact that as m = bxc is the unique integer 
chosen so that m ≤ x < m +1, we also have m + n ≤ x + n < m + n +1, thus implying that 
m + n is the unique such integer for x + n. 

Using this observation, we note that {x + n} = {x} for any x ∈ R and n ∈ Z, and hence 
we also have {(x + n) + (y + m)} = {x + y} and {x + n} · {y + m} = {x} {y}. Thus (x, y) 
is a solution for the equation if and only if (x + n, y + m) is a solution for the equation for 
all integers n, m ∈ Z. In particular, by choosing n = −bxc and m = −byc, it su°ces to ˝nd 
those solutions (x, y) with 0 ≤ x < 1 and 0 ≤ y < 1. The advantage is that for these choices 
of x and y we have bxc = 0, so {x} is simply x, while 0 ≤ x + y < 2, so {x + y} is either 
x + y or x + y − 1. 

First suppose that (x, y) ∈ [0, 1) × [0, 1) is a solution for which we have 0 ≤ x + y < 1. 
Then the original equation {x + y} = {x}·{y} can be written as x +y = xy, which again can 
be written as (1 − x) (1 − y) = 1. Since x, y ∈ [0, 1), we have 0 < 1−x ≤ 1 and 0 < 1−y ≤ 1, 
which implies that (1 − x) (1 − y) ≤ 1. Since the equality must hold, we need both 1 − x 
and 1 − y to be 1, that is we need x = y = 0. Thus the only solution when 0 ≤ x + y < 1 is 
x = y = 0. 

Now suppose that 1 ≤ x+y < 2. Then the original equation can be written as x+y −1 = 
xy, which simpli˝es to (x − 1) (y − 1) = 0. Thus we must have x − 1 = 0 or y − 1 = 0, both 
of which are impossible as we are assuming that 0 ≤ x < 1 and 0 ≤ y < 1. Thus there are 
no solutions in this case. 

Hence the only solution (x, y) satisfying the additional condition 0 ≤ x < 1 and 0 ≤ y < 1 
is x = y = 0. Since we observed that (x, y) is a solution if and only if (x + n, y + m) is a 
solution for all integers m and n, we conclude that the whole solution set is those pairs (x, y) 
so that both x and y are integers. 

Solution 2. First we recall some standard rules for divisibility. Let N = a1 . . . an denote a 
n-digit number (written as usually in base 10, i.e. ai ∈ {0, 1, . . . , 9} and N = an + 10an−1 + 
· · ·+10n−1a1). Then N is divisible by 3 if and only if the sum of its digits, i.e. a1 +a2 +· · ·+an 

is divisible by 3. The same statement also holds when 3 is replaced with 9, but we don't 
need it in this problem. In addition, N is divisible by 11 if and only if the alternating sum 
of its digits a1 − a2 + a3 − a4 + · · · + (−1)n−1 an is divisible by 11. 

Note that 132 = 3 ·4 ·11. Since 3, 4 and 11 are pairwise coprime (do not have any common 
factors apart from 1), an integer N is divisible by 132 if and only if N is divisible by 3, N 
is divisible by 4 and N is divisible by 11. Note that one has to be a bit careful here: even 
though say 24 = 4 · 6, an integer N can be divisible by 4 and 6 without being divisible by 24 
(say, 12) - but of course here the problem is that 4 and 6 share 2 as a common factor. 

Let N = a1 . . . an denote the least such number with ai ∈ {2, 3} for every i. By checking 
small cases, it is not too hard to conclude that N = 23232 satis˝es the conditions (indeed, 
it is clearly divisible by 4, the sum of digits is 12 which is divisible by 3 and the alternating 
sum of digits is 0 which is divisible by 11). Thus we may assume that the smallest N has at 
most 5 digits. 

Let A denote the sum of digits with odd index (those of a1, a3, a5, depending on how 
many digits N has) and let B denote the sum of digits with even index (a2 and a4). Then 
we know that 3 must divide A + B and 11 must divide A − B. Since 0 ≤ A ≤ 3 · 3 = 9 and 
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0 ≤ B ≤ 2 · 3 = 6, we conclude that −6 ≤ A − B ≤ 9. Since A − B is divisible by 11, the 
only possibility is to have A − B = 0, i.e. A = B. But then A + B = 2A, and since 2 and 
3 do not have any common factors apart from 1, A must be divisible by 3 and similarly B 
must be divisible by 3. 

If N had at most 4 digits, then both A and B will be sums of at most 2 digits that are 
2 or 3. The divisibility of such a sum clearly depends only on the number of 2's in it: the 
number of 2's needs to be divisible by 3. But since both sums contain only at most 2 digits, 
the only way such a situation can be achieved is by taking no 2's at all to either sets. This 
in turn implies that all digits are 30s, whence N is clearly odd integer and thus not divisible 
by 4. 

Now suppose N has 5 digits. Since B contains only 2 digits, by the previous argument 
both of them must be 3's. Now A contains 3 digits whose sum is divisible by 3, and again 
not all of them can be 3's. Thus at least one of them must be 2, and hence at least 3 of them 
must be 2's, whence all of them must be 2's. Hence we end up with the number N = 23232, 
which we know to satisfy these properties. 

Finally, observe the simple fact that if N has at least 6 digits, then regardless of their 
choices, we must have N > 23232, thus proving that 23232 is the smallest such integer. 

Solution 3. Apllying the law of sines to the triangle ABC implies that 

BC AB 
= . (1)

sin (∠BAC) sin (∠ACB) 

Since ∠EBA = 90°, we have 
AB = cos (∠BAC) · AE. (2) 

Substituting the value of AB from (2) into (1), and using the fact that AE = 2 · BC, we 
obtain 

BC AB cos (∠BAC) BC 
= = 2 

sin (∠BAC) sin (∠ACB) sin (∠ACB) 

which simpli˝es to sin (∠ACB) = 2 cos (∠BAC) ·sin (∠BAC) = sin (2∠BAC). Since both of 
these angles are between 0° and 180°, it follows that ∠ACB = 2∠BAC or ∠ACB+2∠BAC = 
180°. Our aim is to rule out the second option. 

Suppose we have ∠ACB + 2∠BAC = 180°. Since the sum of the angles of triangle is 
180°, it follows that ∠CBA = ∠BAC by considering the triangle ABC. Thus we must 
have BC = AC, which in turn implies that BC = AC > AE = 2 · BC. This is clearly a 
contradiction, so we must have ∠ACB = 2∠BAC. Thus the diagonal AC divides the angle 
∠ACB and hence also the angle ∠BDA in 2 : 1 ratio. 
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