A Quick problem to start with

- 1. (i) Is 91 prime? What about 127 or 221?
	- (ii) Calculate gcd(1001, 4199)
	- (iii) Calculate lcm(91, 169)

Problems to start with

- 1. If $3|n^2$, does it follow that $3|n$?
- 2. Suppose that n is a positive integer for which all three of $n, n+2$ and $n + 4$ are prime numbers. Prove that n must equal 3.
- 3. Does there exist integers x and y for which $x^2 y^2 = 2026$?
- 4. Prove that for all positive integers n, we have $gcd(21n + 4, 14n + 3) = 1$.
- 5. Consider the polynomial $p(n) = n^2 + n + 41$. Note that $p(0) = 41$, $p(1) =$ 43, $p(2) = 47$, $p(3) = 53$, $p(4) = 61$ are each prime numbers. Does there exist a positive integer n for which n is not a prime number?
- 6. Find all positive integers a, b and c which satisfy the condition $a+b+c=$ $\operatorname{lcm}(a, b, c)$. Here $\operatorname{lcm}(a, b, c)$ denotes the least integer N so thatw $a|N$, $b|N$ and $c|N$.

Slightly harder questions

- 1. Let n be a positive integer. Prove that there exists a positive integer k so that none of the integers $k, k + 1, \ldots, k + n$ is a prime number.
- 2. Let m and n be distinct positive integers. Prove that $gcd(2^{2^m}+1, 2^{2^n}+1)$ = 1.
- 3. Suppose that $2^{n} 1$ is a prime number, where n is a positive integer. Prove that *n* must be a prime number.
- 4. Suppose that 2^a+1 is a prime number, where a is a positive integer. Prove that there exists a non-negative integer n for which $a = 2^n$.
- 5. Let F_n be a sequence of integers defined by setting $F_0 = F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for every $n \geq 2$. Prove that $gcd(F_n, F_{n-1}) = 1$ for every integer n. (The sequence F_n is the Fibonacci sequence).
- 6. Let *n* be an integer. Let *k* and $a_i \in \{0, 1, \ldots, 9\}$ be integers chosen so that $n = \sum_{j=0}^{k} 10^{j} a_j$, i.e. the base 10 representation of n is $a_k a_{k-1} \dots a_1 a_0$. Prove that 9|n if and only if 9| $\sum_{j=0}^{k} a_j$, i.e. an integer n is divisible by 9 if and only if the sum of its digits is divisible by 9.
- 7. Prove that there are infinitely many primes p that are of the form $4n + 3$ for some integer n.
- 8. Given $n > 1$ be a positive integer that is not a prime number, and let $1 = d_1 < d_2 < \cdots < d_k = n$ be the divisors of n for some $k \geq 3$. Find all such integers n for which $d_i|d_{i+1} + d_{i+2}$ for every $i \leq k - 2$.

Difficult problems

1. Call admissible a set A of integers that has the following property:

If $x, y \in A$ (possibly $x = y$) then $x^2 + kxy + y^2 \in A$ for every integer k.

Given integers m and n , prove that the only admissible set containing both m and n is the set of all integers if and only if $gcd(m, n) = 1$.

- 2. The number $N = 4444^{4444}$ is written on the board. Let A denote the sum of the digits of N (when N is written in base 10), and let B denote the sum of the digits of A . What is the sum of the digits of B ? (As an example, if the number 12411624662401682 is written on the board, its sum of digits is $1 + 2 + 4 + 1 + 1 + 6 + 2 + 4 + 6 + 6 + 2 + 4 + 0 + 1 + 6 + 8 + 2 = 56$, whose sum of digits is $5 + 6 = 11$, whose sum of digits is $1 + 1 = 2$.
- 3. Let *n* be an odd integer greater than 1, and let k_1, \ldots, k_n be given integers. Let $a = (a_1, \ldots, a_n)$ be any of the n! orderings of the integers tegers. Let $a = (a_1, \ldots, a_n)$ be any of the *n*! orderings of the integers $1, 2, \ldots, n$, and define $S(a) = \sum_{j=1}^{n} a_j \cdot k_j$. Prove that there exist two distinct orderings b and c so that n! divides the difference $S(b) - S(c)$. Here $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (n-1) \cdot n$ denotes the number of distinct ways to order the numbers $1, 2, \ldots, n$.

Numerical answers to the frst question

- 1. $91 = 7 \cdot 13$ is not a prime; 127 is a prime; $221 = 13 \cdot 17$ is not a prime.
- 2. $gcd(1001, 4199) = 13$
- 3. lcm(91, 169) = $\frac{91 \cdot 169}{13}$ = 91 · 13 = 1183.