1 Problems to start with

Problem 1. Suppose that p is a prime number with $p \ge 5$. Prove that $24|p^2 - 1$.

Problem 2. Suppose that n > 10 is an integer chosen so that both n - 1 and n + 1 are prime numbers. Prove that $720|n^2(n^2 + 16)$

Problem 3. Find all pairs of positive integers a and b which satisfy the condition

- 1. $a^2 b^2 = 84$
- 2. $a^2 b^2 = 42$

Problem 4. Find all integers n which satisfy the congruence

- 1. $2n \equiv 1 \pmod{3}$,
- 2. $3n \equiv 2 \pmod{5}$,
- 3. $5n \equiv 6 \pmod{7}$.

Problem 5. Find all integers n which satisfy the congruence

- 1. $6n \equiv 4 \pmod{14}$,
- 2. $4n \equiv 6 \pmod{48}$,
- 3. $26n \equiv 65 \pmod{91}$.

Problem 6. Suppose that a, b, c and d are positive integers chosen so that a > c. Suppose that a - c|ab + cd. Prove that a - c|ad + bc.

Problem 7. (i) Suppose that x satisfies the condition $x^3 \equiv 1 \pmod{7}$. Does it follow that $x \equiv 1 \pmod{7}$?

(ii) Suppose that x satisfies the condition $x^3 \equiv 1 \pmod{11}$. Does it follow that $x \equiv 1 \pmod{11}$?

Problem 8. Let a, b and c be arbitrary positive integers. Prove that we must always have $7|abc(a^3 - b^3)(a^3 - c^3)(b^3 - c^3)$.

2 More challenging problems

Problem 9. Prove that there are no positive integers x_1, \ldots, x_{10} satisfying the equation $x_1^4 + x_2^4 + \cdots + x_{10}^4 = 10^{100} - 1$.

Problem 10. Let *n* be an integer, and let $a_k a_{k-1} \dots a_0$ be the base 10 representation of *n*, i.e. $n = \sum_{j=0}^{k} 10^j a_j$, and $a_j \in \{0, 1, \dots, 9\}$ for every *j*. Prove that

1. 3|n if and only if $3|\sum_{j=0}^{k} a_j|$

- 2. 9|n if and only if 9| $\sum_{j=0}^{k} a_j$
- 3. 11|n if and only if $11|a_0 a_1 + a_2 \dots + (-1)^k a_k$, i.e. if and only if 11 divides the alternating sum of the digits (where every second sign is a + and every second sign is -).

Problem 11.

- 1. Determine the number of pairs of positive integers a and b satisfying the equation $a^2 b^2 = 10000$ (note that you don't have to find all the solutions explicitly)
- 2. Let n be a fixed positive integer. Can you determine the number of pairs of positive integers a and b satisfying the equation $a^2 b^2 = n$, in terms of some "standard" properties of n?

Problem 12. Find integers a, b, c, d and e such that the congruences $n \equiv a \pmod{2}$, $n \equiv b \pmod{3}$ and $n \equiv c \pmod{4}$, $n \equiv d \pmod{6}$ and $n \equiv e \pmod{12}$ cover all integers. That is, find such integers so that for every integer n, at least one of these five congruences is satisfied for n.

Problem 13. Prove that $2^d - 1|2^n - 1$ if and only if d|n.

Problem 14. Prove that $gcd(2^a - 1, 2^b - 1) = 2^{gcd(a,b)} - 1$.

Problem 15. Prove that there does not exist positive integers k and n for which we have $n(n+1)(n+2)(n+3) = k^2$.

3 Difficult problems

Problem 16. Let p be a prime number, and suppose that $1 \le k \le p-1$. Prove that $p|\binom{p}{k}$, where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ is a number of ways to choose a subset of size k from a larger set of size n. Give an example of a composite integer n (i.e. n > 1 and n is not a prime) for which n does not divide $\binom{n}{k}$ for some $k \in \{1, \ldots, n-1\}$.

Problem 17. The binomial theorem states that for every positive integers a, b and n, one has $(a+b)^n = \sum_{j=0}^n {n \choose j} a^j b^{n-j}$. Let p be a prime number. Prove that for every positive integer a, we have $a^p \equiv a \pmod{p}$.

Problem 18. Suppose that a and b are positive integers so that $a^n + n|b^n + n$ for all positive integers n. Does it follow that a = b?

Problem 19. Let *n* be a positive integer, and suppose that a_1, \ldots, a_k are distinct positive integers chosen so that $n|a_i(a_{i+1}-1)$ for every $i \in \{1, \ldots, k-1\}$. Prove that we cannot have $n|a_k(a_1-1)$.

Problem 20. Does there exist a positive integer N so that N has precisely 2025 distinct prime divisors, and $N|2^N + 1$? (N is allowed to be divisible by a prime power).