Problem sheet 5

Problem 1. Find all polynomials P satisfying the equation $(x-10) P(x+1)=x P(x)$.
Problem 2. Solve the system of equations $\left\{\begin{array}{l}x^{2}+y^{2}=6 z \\ y^{2}+z^{2}=6 x \\ z^{2}+x^{2}=6 y\end{array} \quad\right.$ over the real numbers.
Problem 3. Determine all values of the constant b for which the equations $2023 x^{2}+b x+3202=0$ and $3202 x^{2}+b x+2023=0$ have a common solution.

Problem 4. Find all polynomials P satisfying the equation $2(P(x)+1)=P(x-1)+P(x+1)$.
Problem 5. Let P be a monic polynomial (i.e. its leading coefficient is 1) with integer coefficients satisfying $P(2023)=P(2010)=0$. Furthermore, suppose that $|P(2017)|<20$. Find all possible values of $P(2017)$.

Problem 6. Factorise $a^{3}+b^{3}+c^{3}-3 a b c$, i.e. write it as a product of two non-constant polynomials (or prove that such an expression does not exist).

Problem 7. Let a and b be any two distinct roots of the polynomial $x^{4}+x^{3}-1$. Prove that $a b$ is a root of $x^{6}+x^{4}+x^{3}+x^{2}-1$.

Homework problems

You may submit your written solutions until the next meeting (time to be confirmed) in person, or by email (eero.raty@umu.se).

Problem 1. The equation $x^{3}+2 x^{2}+3 x+4=0$ has three distinct roots denoted by a, b and c. Find the value of the expression $a^{2}+b^{2}+c^{2}$.

Problem 2. Suppose that $P(x)=x^{6}+a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ is a polynomial for which we have $P(i)=i$ for $i \in\{0,1,2,3,4,5\}$. Determine the value of $P(6)$.

Problem 3. Suppose that a, b and c are real numbers satisfying the equation

$$
(2 b-a)^{2}+(2 b-c)^{2}=2\left(2 b^{2}-a c\right) .
$$

Prove that a, b and c are three consecutive terms in some arithmetic progression (an arithmetic progression is a sequence $\left(a_{n}\right)$ for which there exists constants u and v such that $a_{n}=u n+v$ for every positive integer n. Hence three consecutive terms of an arithmetic progression are always of the form $x-y, x$ and $x+y$ for some x and y).

