Problem sheet 2

Problem 1. Let n be a number with digits $a_{m-1} \ldots a_{0}$ - that is, we have $n=\sum_{j=0}^{m-1} a_{j} 10^{j}$. Prove that

1. 3 divides n if and only if 3 divides $\sum_{j=0}^{m-1} a_{j}$.
2. 9 divides n if and only if 9 divides $\sum_{j=0}^{m-1} a_{j}$.
3. 11 divides n if and only if 11 divides $a_{0}-a_{1}+a_{2} \cdots+(-1)^{m-1} a_{m-1}$.

Problem 2. Find all positive integers n for which $(n-1)$! is divisible with n (here $n!=n$. $(n-1) \cdots \cdot 2 \cdot 1)$.

Problem 3. When 4444^{4444} is written in decimal notation, let A be the sum of its digits. Let B be the sum of the digits of A. Find the sum of the digits of B.

Problem 4.

1. Find all integer solutions of the equation $x^{2}=2023+y^{2}$.
2. Find all integer solutions of the equation $x^{2}=2022+y^{2}$.

Problem 5. Let $a<b$ be positive integers. Prove that every block of b consecutive integers contains two distinct integers x and y so that $a b \mid x y$.

Problem 6. Prove that there does not exist positive integers x, y and z satisfying $x^{2}+3 y^{2}=2 z^{2}$.

Homework problems

You may submit your written solutions until the next meeting (7 November) in person, or by email (eero.raty@umu.se).

Problem 1. Let m be a given positive integer. Prove that there exists a positive integer n (depending on m) so that none of the numbers $n+1, \ldots, n+m$ is a prime number.

Problem 2. Determine all pairs of positive integers (x, y) satisfying $(x y-7)^{2}=x^{2}+y^{2}$.
Problem 3. 25 people decide to form some number of smaller clubs. Each such smaller club contains exactly 5 members, and any two smaller clubs have at most 1 common member. Prove that the maximum number of smaller clubs that can be formed is 30 , and construct an example of 30 such clubs satisfying the required properties.

