Problem sheet 1

Problem 1. Using three distinct digits, we create the smallest and largest 3-digit number possible, and add them together. If the result is 1655 , what are the three digits?

Problem 2. What is the maximal positive integer n such that $n+10$ divides $n^{2}+2023$?

Problem 3. In each field of a 3×3 table, we write one of the numbers $0,1,2$. We add the numbers in each row and each column. Is it possible that the resulting 6 numbers are all different?

Problem 4. Let P be an interior point of the rectangle $A B C D$. Assuming $A P=4, B P=6$, and $D P=9$, determine the length of $C P$.

Homework problems

You may submit your written solutions until the next meeting (17 October) in person, or by email (istvan.tomon@umu.se).

Problem 1. Find all real solutions x, y of the equation

$$
\{x+y\}=\{x\} \cdot\{y\}
$$

where $\{a\}$ is the fractional part (also known as the decimal part) of a. It is defined as $\{a\}=a-\lfloor a\rfloor$, where $\lfloor a\rfloor$ is the largest integer not larger than a.
(7 points)

Problem 2. Determine the smallest positive integer whose every digit is 2 or 3 , and is divisible by 132 .
(7 points)

Problem 3. Given a parallelogram $A B C D$, draw the line perpendicular to the side $A B$ from B. This line intersects the $A C$ diagonal in the interior point E. Assuming $A E=2 \cdot B C$, in what ratio does $A C$ divide the angle $\angle B A D$?

