Problem set January 24th

Questions concerning these problems after the session can be sent by email to eero.raty@umu.se, or asked in subsequent sessions. (*) denotes a problem that is very challenging.

Problem 1. Make sure that you are comfortable with the following statements.

- 1. Let c > 1, k > l > 0 be constants. Then for sufficiently large n, we have $c^n > n^k > \log(n)$ and $\alpha n^k > \beta n^l$ for any $\alpha, \beta > 0$.
- 2. Prove that for n sufficiently large we have $n^n > n! > (n/2)^{n/2}$. Improve this to $n! > n^{n/2}$.
- 3. Given p and n, let k be the largest non-negative integer for which $p^k|n$. Prove that $k \leq \log_p n$.

Problem 2. Find all integers n for which $n^2 + 5n + 10$ is a square of an integer.

Problem 3. Find all integers n for which $n^2 + 20n + 11$ is a square of an integer.

Problem 4. Find all integers n for which $n \cdot 2^n + 1$ is a square of an integer.

- 1. Check several small values of n by hand.
- 2. Suppose that $n \geq 3$ is a solution and let y be chosen so that $n \cdot 2^n = y^2 1 = (y-1)(y+1)$.
- 3. Prove that that the highest common factor of y-1 and y+1 must be 2. Deduce that one of y-1 and y+1 is divisible by 2^{n-1} while the other is divisible by 2.
- 4. Suppose that $2^{n-1}|y+1$. Conclude that we must have $y+1 \ge 2^{n-1}$ and $y-1 \le 2n$, and derive a contradiction when n is sufficiently large.
- 5. Complete the proof in the case $2^{n-1}|y-1$ in a similar fashion.

Problem 5. Determine all positive integers x for which $1 + 2^x + 2^{2x+1}$ is a square of an integer.

- 1. We seek for integer solutions for the equation $1 + 2^x + 2^{2x+1} = y^2$, which can be written as $2^x (2^{x+1} + 1) = (y-1)(y+1)$.
- 2. Find solutions when $0 \le x \le 2$.
- 3. For $x \geq 3$, the product on the left hand side is clearly an even integer, so y must be odd. Check that the highest common factor of y-1 and y+1 must be 2. Deduce that one of these terms must be divisible by 2 and the other by 2^{x-1} .
- 4. First suppose that

$$y+1 = 2^{x-1}p$$
$$y-1 = 2q$$

where p and q are odd positive integers satisfying $pq = 2^{x+1} + 1$.

- 5. Prove that for x sufficiently large we cannot have $p \geq 5$, by using the fact that y+1 and y-1 are integers of the roughly same size, while $2^{x-1}p$ is substantially larger than 2q (but you should formalise this properly using inequalities!).
- 6. Find all solutions when $p \in \{1, 3\}$.
- 7. Repeat the steps above for the case when we have

$$y - 1 = 2^{x-1}p$$
$$y + 1 = 2q$$

Problem 6. Find all positive integers a > b > c > 1 for which $f(a, b, c) = \frac{abc-1}{(a-1)(b-1)(c-1)}$ is an integer.

- 1. Verify that $g(x) = \frac{x}{x-1}$ is a monotone decreasing function for $x \ge 2$.
- 2. Prove that 1 < f(a, b, c) < 4 for every a > b > c > 1.
- 3. Prove that all three variables a, b and c must have the same parity.
- 4. First suppose that f(a, b, c) = 3. By modifying your proof above, find an upper bound first for c and then for b (try to e.g. conclude that the only possible value for c must be 3), and find all solutions using these bounds.
- 5. Now suppose that f(a, b, c) = 2. In this case, find analogous bounds first for c and then for b (these are going to be slightly worse, so more special cases to be checked by hand). Use them to split the proof into a number of cases, and find all solutions in this case as well.

Problem 7. Let $n \ge 1$ be a positive integer. Prove that for any m there exists positive integers x_1, \ldots, x_n so that $0 \le x_i \le 2^{n-1} \sqrt[n]{m}$ for every $1 \le i \le n$ and

$$m = x_1 + x_2^2 + x_3^3 + \dots + x_n^n$$
.

- 1. To gain some intuition on the problem, prove this when n=2 (the case n=1 is trivial). You may also wish to consider the case n=3.
- 2. Based on these special cases, it might be useful to pick these values greedily starting from x_n : that is, we start by choosing $x_n = \lfloor \sqrt[n]{m} \rfloor$, then x_{n-1} as large as possible without violating the condition $x_{n-1}^{n-1} + x_n^n \leq m$, and so on.
- 3. We have $x_n \leq \sqrt[n]{m}$, which is substantially smaller than $2^{n-1}\sqrt[n]{m}$. This suggests that we could aim for a stronger statement than $0 \leq x_i \leq 2^{n-1}\sqrt[n]{m}$, such as $x_{i-1} \leq 2x_i$.
- 4. Prove that we must always have $x_{i-1} \leq 2x_i$ using the fact that these values were chosen greedily, and conclude the result.

Problem 8. Find all pairs (p,q) of prime numbers for which $p^2|q^3+1$ and $q^2|p^6-1$.

- 1. Find all solutions when $p \in \{2,3\}$ or $q \in \{2,3\}$, and from now on suppose that both p and q are at least 5.
- 2. Convince yourself that we have $q^3 + 1 = (q+1)(q^2 q + 1)$ and $p^6 1 = (p^2 1)(p^2 + p + 1)(p^2 p + 1)$.
- 3. Prove that both of the conditions p|q+1 and $p|q^2-q+1$ cannot be simultaneously satisfied, and conclude that either $p^2|q+1$ or $p^2|q^2-q+1$.
- 4. Prove that q cannot divide at least two of the terms $p^2 1$, $p^2 + p + 1$ or $p^2 p + 1$, and conclude that q^2 must divide one of these terms.
- 5. The divisibility conditions give us inequalities $q^2 \le p^2 + p + 1$ and $p^2 \le q^2 q + 1$. Prove that there are no prime numbers satisfying both of these inequalities.

Problem 9. Let a_n be a sequence defined by setting $a_0 = 1$ and $a_{n+1} = \lfloor a_n + \sqrt{a_n} + 1/2 \rfloor$ for every $n \geq 0$. Prove that a_0 is the only square number in this sequence. Here $\lfloor x \rfloor$ denotes the largest integer that is at most x; that is $\lfloor \sqrt{2} \rfloor = 1$, $\lfloor 3.14 \rfloor = 3$ and $\lfloor 2 \rfloor = 2$.

- 1. Note that a_n is always an integer, so we have $a_{n+1} = a_n + \lfloor \sqrt{a_n} + 1/2 \rfloor$. This suggests that we should split the proof into two cases, based on whether $\sqrt{a_n} \lfloor \sqrt{a_n} \rfloor$ is between 0 and 1/2, or whether it is between 1/2 and 1.
- 2. First suppose that for some positive integer m we have $m \le \sqrt{a_n} < m + 1/2$. Prove that in this case we have $m^2 < a_{n+1} < (m+1)^2$.
- 3. Now suppose that for some positive integer m we have $m + 1/2 \le \sqrt{a_n} < m + 1$. Prove that in this case we have $(m+1)^2 < a_{n+1} < (m+2)^2$.

Problem 10. A few facts about p-adic valuation $v_p(a)$. Throughout this question, p always denotes a prime number.

- 1. $v_p(a)$ is defined to be the non-negative integer n chosen so that p^n divides a, but p^{n+1} does not divide a. In particular, $v_p(a) = 0$ if p does not divide a.
- 2. Prove that $v_p(ab) = v_p(a) + v_p(b)$.
- 3. Prove that $v_p(a+b) \ge \min(v_p(a), v_p(b))$. Also prove that if $v_p(a) \ne v_p(b)$, then $v_p(a+b) = \min(v_p(a), v_p(b))$, and give concrete examples of a, b and p for which we have $v_p(a+b) > \min(v_p(a), v_p(b))$.
- 4. Prove that there exists some constants α and β for which we have

$$\frac{n}{p-1} - \alpha \log_p(n) - \beta \le v_p(n!) \le \frac{n}{p-1}.$$

You don't have to come up with the best possible constants, but try to come up with reasonable estimates.

- 5. The aim of this part is to explain how to relate $v_p\left(a^n-1\right)$ with $v_p\left(a-1\right)$ and $v_p\left(n\right)$ in certain useful situations.
 - (a) Let a be a positive integer and let p be a prime which is not 2. Suppose that p divides a-1. Prove that p^2 divides a^p-1 .
 - (b) (*) Again, suppose that a and p are chosen so that $p \neq 2$ is a prime and p divides a-1. Prove that $v_p(a^p-1)=v_p(a-1)+1$. (Hint: One way to prove this uses the Binomial theorem $(x+y)^n=\sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$).
 - (c) (*) Now let n be a positive integer, and let a and p be chosen so that $p \neq 2$ is a prime and p divides a-1. Prove that $v_p(a^n-1)=v_p(a-1)+v_p(n)$ (Hint: prove it by induction on $v_p(n)$).
 - (d) (*) Now suppose that a is an odd integer. Prove that $v_2(a^n 1) = v_2(a^2 1) + v_2(n) 1$. Explain why the proof used in the previous case does not apply here, and why we do not always have $v_2(a^n 1) = v_2(a 1) + v_2(n)$.

Problem 11. Find all triples of positive integers (a, b, p) with p prime and $a^p = b! + p$.

- 1. Prove that b < 2p. Use this to conclude that $a < p^2$.
- 2. Suppose that $b \le p-1$. Prove that this implies that $a \le b$, and explain why this leads to a contradiction. Hence conclude that $p \le b < 2p$, and that p|b| and p|a.
- 3. Prove that a cannot have any prime divisor that is less than p. Conclude by using previous observations that a = p.
- 4. (*) Now the goal is to prove that $b! = p(p^{p-1} 1)$ does not have any solutions when p is a prime with p > 5. Again, it will be useful to look for largest power of 2 dividing $p^{p-1} 1$, but finding this is substantially harder than in the previous problems. It might be useful to explore with some concrete values of p to find intuition.
- 5. (*) Further hint: Let $v_2(n)$ denote the largest power of 2 dividing n: for example, we have $v_2(5) = 0$, $v_2(24) = 3$ and $v_2(10) = 1$. Prove that $v_2(p^{p-1} 1) = v_2(p^2 1) + v_2(p-1) 1$ whenever $p \ge 3$ is a prime (in fact, this holds for any odd integer $p \ge 3$, see the previous problem). Conclude that $v_2(p^{p-1} 1) \le 3\log_2(p) 1$ (weaker bounds will also be useful, so don't worry if you end up with slightly different expression).
- 6. Come up with estimates for v_2 (b!) (see previous problem), and conclude an upper bound for b in terms of p.
- 7. Use these estimates to derive a contradiction when p is sufficiently large.