
Problem set January 24th 

Questions concerning these problems after the session can be sent by email to eero.raty@umu.se, 
or asked in subsequent sessions. (*) denotes a problem that is very challenging. 

Problem 1. Make sure that you are comfortable with the following statements. 

n k1. Let c > 1, k > l > 0 be constants. Then for su°ciently large n, we have c > n > 
log (n) and αnk > βnl for any α, β > 0. 

n > n! > (n/2) 
n/2 n/22. Prove that for n su°ciently large we have n . Improve this to n! > n . 

3. Given p and n, let k be the largest non-negative integer for which pk|n. Prove that 
k ≤ logp n. 

Problem 2. Find all integers n for which n2 + 5n + 10 is a square of an integer. 

Problem 3. Find all integers n for which n2 + 20n + 11 is a square of an integer. 

Problem 4. Find all integers n for which n · 2n + 1 is a square of an integer. 

1. Check several small values of n by hand. 

2. Suppose that n ≥ 3 is a solution and let y be chosen so that n · 2n = y2 − 1 = 
(y − 1) (y + 1). 

3. Prove that that the highest common factor of y − 1 and y + 1 must be 2. Deduce that 
one of y − 1 and y + 1 is divisible by 2n−1 while the other is divisible by 2. 

4. Suppose that 2n−1|y + 1. Conclude that we must have y + 1 ≥ 2n−1 and y − 1 ≤ 2n, 
and derive a contradiction when n is su°ciently large. 

5. Complete the proof in the case 2n−1|y − 1 in a similar fashion. 

+ 22x+1Problem 5. Determine all positive integers x for which 1 + 2x is a square of an 
integer. 

1. We seek for integer solutions for the equation 1+2x +22x+1 = y2 , which can be written 
as 2x (2x+1 + 1) = (y − 1) (y + 1). 

2. Find solutions when 0 ≤ x ≤ 2. 

3. For x ≥ 3, the product on the left hand side is clearly an even integer, so y must be 
odd. Check that the highest common factor of y − 1 and y +1 must be 2. Deduce that 
one of these terms must be divisible by 2 and the other by 2x−1 . 

4. First suppose that 

y + 1 = 2x−1 p 

y − 1 = 2q 

where p and q are odd positive integers satisfying pq = 2x+1 + 1. 
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5. Prove that for x su°ciently large we cannot have p ≥ 5, by using the fact that y + 1 
and y − 1 are integers of the roughly same size, while 2x−1p is substantially larger than 
2q (but you should formalise this properly using inequalities!). 

6. Find all solutions when p ∈ {1, 3}. 

7. Repeat the steps above for the case when we have 

y − 1 = 2x−1 p 

y + 1 = 2q 

abc−1Problem 6. Find all positive integers a > b > c > 1 for which f (a, b, c) = is
(a−1)(b−1)(c−1) 

an integer. 

x1. Verify that g (x) = is a monotone decreasing function for x ≥ 2. 
x−1 

2. Prove that 1 < f (a, b, c) < 4 for every a > b > c > 1. 

3. Prove that all three variables a, b and c must have the same parity. 

4. First suppose that f (a, b, c) = 3. By modifying your proof above, ˝nd an upper bound 
˝rst for c and then for b (try to e.g. conclude that the only possible value for c must 
be 3), and ˝nd all solutions using these bounds. 

5. Now suppose that f (a, b, c) = 2. In this case, ˝nd analogous bounds ˝rst for c and 
then for b (these are going to be slightly worse, so more special cases to be checked by 
hand). Use them to split the proof into a number of cases, and ˝nd all solutions in this 
case as well. 

Problem 7. Let n ≥ 1 be a positive integer. Prove that for any m there exists positive √ 
integers x1, . . . , xn so that 0 ≤ xi ≤ 2n−1 n m for every 1 ≤ i ≤ n and 

2 3 n m = x1 + x2 + x3 + · · · + xn. 

1. To gain some intuition on the problem, prove this when n = 2 (the case n = 1 is 
trivial). You may also wish to consider the case n = 3. 

2. Based on these special cases, it might be useful to pick these values greedily starting √ 
from xn: that is, we start by choosing xn = b n mc, then xn−1 as large as possible 

n−1 nwithout violating the condition x ≤ m, and so on.n−1 + xn 

√ √ 
3. We have xn ≤ n m, which is substantially smaller than 2√ 

n−1 n m. This suggests that 
we could aim for a stronger statement than 0 ≤ xi ≤ 2n−1 n m , such as xi−1 ≤ 2xi. 

4. Prove that we must always have xi−1 ≤ 2xi using the fact that these values were chosen 
greedily, and conclude the result. 
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Problem 8. Find all pairs (p, q) of prime numbers for which p2|q3 + 1 and q2|p6 − 1. 

1. Find all solutions when p ∈ {2, 3} or q ∈ {2, 3}, and from now on suppose that both p 
and q are at least 5. 

2. Convince yourself that we have q3 + 1 = (q + 1) (q2 − q + 1) and 
p6 − 1 = (p2 − 1) (p2 + p + 1) (p2 − p + 1). 

3. Prove that both of the conditions p|q + 1 and p|q2 − q + 1 cannot be simultaneously 
satis˝ed, and conclude that either p2|q + 1 or p2|q2 − q + 1. 

4. Prove that q cannot divide at least two of the terms p2 − 1, p2 + p + 1 or p2 − p + 1, 
2and conclude that q must divide one of these terms. 

2 25. The divisibility conditions give us inequalities q ≤ p2 + p + 1 and p ≤ q2 − q + 1. 
Prove that there are no prime numbers satisfying both of these inequalities. 

√ 
Problem 9. Let an be a sequence de˝ned by setting a0 = 1 and an+1 = ban + an + 1/2c 
for every n ≥ 0. Prove that a0 is the only square number in this sequence. Here bxc denotes√ 
the largest integer that is at most x; that is b 2c = 1, b3.14c = 3 and b2c = 2. 

√ 
1. Note that an is always an integer, so we have an+1 = an + b an + 1/2c. This suggests√ √ 

that we should split the proof into two cases, based on whether an −b anc is between 
0 and 1/2, or whether it is between 1/2 and 1. 

√ 
2. First suppose that for some positive integer m we have m ≤ an < m + 1/2. Prove that 

2in this case we have m2 < an+1 < (m + 1) . 
√ 

3. Now suppose that for some positive integer m we have m + 1/2 ≤ an < m + 1. Prove 
2 2that in this case we have (m + 1) < an+1 < (m + 2) . 

Problem 10. A few facts about p-adic valuation vp (a). Throughout this question, p always 
denotes a prime number. 

n n+11. vp (a) is de˝ned to be the non-negative integer n chosen so that p divides a, but p 
does not divide a. In particular, vp (a) = 0 if p does not divide a. 

2. Prove that vp (ab) = vp (a) + vp (b). 

3. Prove that vp (a + b) ≥ min (vp (a) , vp (b)). Also prove that if vp (a) 6= vp (b), then 
vp (a + b) = min (vp (a) , vp (b)), and give concrete examples of a, b and p for which we 
have vp (a + b) > min (vp (a) , vp (b)). 

4. Prove that there exists some constants α amd β for which we have 

n n − α logp (n) − β ≤ vp (n!) ≤ . 
p − 1 p − 1 

You don't have to come up with the best possible constants, but try to come up with 
reasonable estimates. 
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5. The aim of this part is to explain how to relate vp (a
n − 1) with vp (a − 1) and vp (n) 

in certain useful situations. 

(a) Let a be a positive integer and let p be a prime which is not 2. Suppose that p 
2 p − 1.divides a − 1. Prove that p divides a 

(b) (*) Again, suppose that a and p are chosen so that p 6= 2 is a prime and p divides 
a − 1. Prove that vp (a

p − 1) = vp (a − 1) + 1. (Hint: One way to prove this usesP � � n n kthe Binomial theorem (x + y)n = x yn−k).k=0 k 

(c) (*) Now let n be a positive integer, and let a and p be chosen so that p 6= 2 is 
a prime and p divides a − 1. Prove that vp (a

n − 1) = vp (a − 1) + vp (n) (Hint: 
prove it by induction on vp (n)). 

(d) (*) Now supppose that a is an odd integer. Prove that v2 (a
n − 1) = v2 (a

2 − 1) + 
v2 (n) − 1. Explain why the proof used in the previous case does not apply here, 
and why we do not always have v2 (a

n − 1) = v2 (a − 1) + v2 (n). 

Problem 11. Find all triples of positive integers (a, b, p) with p prime and ap = b! + p. 

21. Prove that b < 2p. Use this to conclude that a < p . 

2. Suppose that b ≤ p − 1. Prove that this implies that a ≤ b, and explain why this leads 
to a contradiction. Hence conclude that p ≤ b < 2p, and that p|b! and p|a. 

3. Prove that a cannot have any prime divisor that is less than p. Conclude by using 
previous observations that a = p. 

4. (*) Now the goal is to prove that b! = p (pp−1 − 1) does not have any solutions when p 
is a prime with p > 5. Again, it will be useful to look for largest power of 2 dividing 
pp−1 − 1, but ˝nding this is substantially harder than in the previous problems. It 
might be useful to explore with some concrete values of p to ˝nd intuition. 

5. (*) Further hint: Let v2 (n) denote the largest power of 2 dividing n: for example, we 
have v2 (5) = 0, v2 (24) = 3 and v2 (10) = 1. Prove that v2 (p

p−1 − 1) = v2 (p
2 − 1) + 

v2 (p − 1) − 1 whenever p ≥ 3 is a prime (in fact, this holds for any odd integer p ≥ 3, 
see the previous problem). Conclude that v2 (p

p−1 − 1) ≤ 3 log2 (p) − 1 (weaker bounds 
will also be useful, so don't worry if you end up with slightly di˙erent expression). 

6. Come up with estimates for v2 (b!) (see previous problem), and conclude an upper bound 
for b in terms of p. 

7. Use these estimates to derive a contradiction when p is su°ciently large. 
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