
Problem set January 24th

Questions concerning these problems after the session can be sent by email to eero.raty@umu.se,
or asked in subsequent sessions. (*) denotes a problem that is very challenging.

Problem 1. Make sure that you are comfortable with the following statements.

1. Let c > 1, k > l > 0 be constants. Then for su�ciently large n, we have cn > nk >
log (n) and αnk > βnl for any α, β > 0.

2. Prove that for n su�ciently large we have nn > n! > (n/2)
n/2. Improve this to n! > nn/2.

3. Given p and n, let k be the largest non-negative integer for which pk|n. Prove that
k ≤ logp n.

Problem 2. Find all integers n for which n2 + 5n+ 10 is a square of an integer.

Problem 3. Find all integers n for which n2 + 20n+ 11 is a square of an integer.

Problem 4. Find all integers n for which n · 2n + 1 is a square of an integer.

1. Check several small values of n by hand.

2. Suppose that n ≥ 3 is a solution and let y be chosen so that n · 2n = y2 − 1 =
(y − 1) (y + 1).

3. Prove that that the highest common factor of y − 1 and y + 1 must be 2. Deduce that
one of y − 1 and y + 1 is divisible by 2n−1 while the other is divisible by 2.

4. Suppose that 2n−1|y + 1. Conclude that we must have y + 1 ≥ 2n−1 and y − 1 ≤ 2n,
and derive a contradiction when n is su�ciently large.

5. Complete the proof in the case 2n−1|y − 1 in a similar fashion.

Problem 5. Determine all positive integers x for which 1 + 2x + 22x+1 is a square of an
integer.

1. We seek for integer solutions for the equation 1+2x+22x+1 = y2, which can be written
as 2x (2x+1 + 1) = (y − 1) (y + 1).

2. Find solutions when 0 ≤ x ≤ 2.

3. For x ≥ 3, the product on the left hand side is clearly an even integer, so y must be
odd. Check that the highest common factor of y− 1 and y+1 must be 2. Deduce that
one of these terms must be divisible by 2 and the other by 2x−1.

4. First suppose that

y + 1 = 2x−1p

y − 1 = 2q

where p and q are odd positive integers satisfying pq = 2x+1 + 1.
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5. Prove that for x su�ciently large we cannot have p ≥ 5, by using the fact that y + 1
and y− 1 are integers of the roughly same size, while 2x−1p is substantially larger than
2q (but you should formalise this properly using inequalities!).

6. Find all solutions when p ∈ {1, 3}.

7. Repeat the steps above for the case when we have

y − 1 = 2x−1p

y + 1 = 2q

Problem 6. Find all positive integers a > b > c > 1 for which f (a, b, c) = abc−1
(a−1)(b−1)(c−1)

is
an integer.

1. Verify that g (x) = x
x−1

is a monotone decreasing function for x ≥ 2.

2. Prove that 1 < f (a, b, c) < 4 for every a > b > c > 1.

3. Prove that all three variables a, b and c must have the same parity.

4. First suppose that f (a, b, c) = 3. By modifying your proof above, �nd an upper bound
�rst for c and then for b (try to e.g. conclude that the only possible value for c must
be 3), and �nd all solutions using these bounds.

5. Now suppose that f (a, b, c) = 2. In this case, �nd analogous bounds �rst for c and
then for b (these are going to be slightly worse, so more special cases to be checked by
hand). Use them to split the proof into a number of cases, and �nd all solutions in this
case as well.

Problem 7. Let n ≥ 1 be a positive integer. Prove that for any m there exists positive
integers x1, . . . , xn so that 0 ≤ xi ≤ 2n−1 n

√
m for every 1 ≤ i ≤ n and

m = x1 + x22 + x33 + · · ·+ xnn.

1. To gain some intuition on the problem, prove this when n = 2 (the case n = 1 is
trivial). You may also wish to consider the case n = 3.

2. Based on these special cases, it might be useful to pick these values greedily starting
from xn: that is, we start by choosing xn = b n

√
mc, then xn−1 as large as possible

without violating the condition xn−1
n−1 + xnn ≤ m, and so on.

3. We have xn ≤ n
√
m, which is substantially smaller than 2n−1 n

√
m. This suggests that

we could aim for a stronger statement than 0 ≤ xi ≤ 2n−1 n
√
m , such as xi−1 ≤ 2xi.

4. Prove that we must always have xi−1 ≤ 2xi using the fact that these values were chosen
greedily, and conclude the result.
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Problem 8. Find all pairs (p, q) of prime numbers for which p2|q3 + 1 and q2|p6 − 1.

1. Find all solutions when p ∈ {2, 3} or q ∈ {2, 3}, and from now on suppose that both p
and q are at least 5.

2. Convince yourself that we have q3 + 1 = (q + 1) (q2 − q + 1) and
p6 − 1 = (p2 − 1) (p2 + p+ 1) (p2 − p+ 1).

3. Prove that both of the conditions p|q + 1 and p|q2 − q + 1 cannot be simultaneously
satis�ed, and conclude that either p2|q + 1 or p2|q2 − q + 1.

4. Prove that q cannot divide at least two of the terms p2 − 1, p2 + p + 1 or p2 − p + 1,
and conclude that q2 must divide one of these terms.

5. The divisibility conditions give us inequalities q2 ≤ p2 + p + 1 and p2 ≤ q2 − q + 1.
Prove that there are no prime numbers satisfying both of these inequalities.

Problem 9. Let an be a sequence de�ned by setting a0 = 1 and an+1 = ban +
√
an + 1/2c

for every n ≥ 0. Prove that a0 is the only square number in this sequence. Here bxc denotes
the largest integer that is at most x; that is b

√
2c = 1, b3.14c = 3 and b2c = 2.

1. Note that an is always an integer, so we have an+1 = an + b
√
an + 1/2c. This suggests

that we should split the proof into two cases, based on whether
√
an−b

√
anc is between

0 and 1/2, or whether it is between 1/2 and 1.

2. First suppose that for some positive integer m we have m ≤ √an < m+ 1/2. Prove that

in this case we have m2 < an+1 < (m+ 1)2.

3. Now suppose that for some positive integer m we have m+ 1/2 ≤ √an < m+ 1. Prove

that in this case we have (m+ 1)2 < an+1 < (m+ 2)2.

Problem 10. A few facts about p-adic valuation vp (a). Throughout this question, p always
denotes a prime number.

1. vp (a) is de�ned to be the non-negative integer n chosen so that pn divides a, but pn+1

does not divide a. In particular, vp (a) = 0 if p does not divide a.

2. Prove that vp (ab) = vp (a) + vp (b).

3. Prove that vp (a+ b) ≥ min (vp (a) , vp (b)). Also prove that if vp (a) 6= vp (b), then
vp (a+ b) = min (vp (a) , vp (b)), and give concrete examples of a, b and p for which we
have vp (a+ b) > min (vp (a) , vp (b)).

4. Prove that there exists some constants α amd β for which we have

n

p− 1
− α logp (n)− β ≤ vp (n!) ≤

n

p− 1
.

You don't have to come up with the best possible constants, but try to come up with
reasonable estimates.
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5. The aim of this part is to explain how to relate vp (a
n − 1) with vp (a− 1) and vp (n)

in certain useful situations.

(a) Let a be a positive integer and let p be a prime which is not 2. Suppose that p
divides a− 1. Prove that p2 divides ap − 1.

(b) (*) Again, suppose that a and p are chosen so that p 6= 2 is a prime and p divides
a− 1. Prove that vp (a

p − 1) = vp (a− 1) + 1. (Hint: One way to prove this uses
the Binomial theorem (x+ y)n =

∑n
k=0

(
n
k

)
xkyn−k).

(c) (*) Now let n be a positive integer, and let a and p be chosen so that p 6= 2 is
a prime and p divides a − 1. Prove that vp (a

n − 1) = vp (a− 1) + vp (n) (Hint:
prove it by induction on vp (n)).

(d) (*) Now supppose that a is an odd integer. Prove that v2 (a
n − 1) = v2 (a

2 − 1)+
v2 (n)− 1. Explain why the proof used in the previous case does not apply here,
and why we do not always have v2 (a

n − 1) = v2 (a− 1) + v2 (n).

Problem 11. Find all triples of positive integers (a, b, p) with p prime and ap = b! + p.

1. Prove that b < 2p. Use this to conclude that a < p2.

2. Suppose that b ≤ p− 1. Prove that this implies that a ≤ b, and explain why this leads
to a contradiction. Hence conclude that p ≤ b < 2p, and that p|b! and p|a.

3. Prove that a cannot have any prime divisor that is less than p. Conclude by using
previous observations that a = p.

4. (*) Now the goal is to prove that b! = p (pp−1 − 1) does not have any solutions when p
is a prime with p > 5. Again, it will be useful to look for largest power of 2 dividing
pp−1 − 1, but �nding this is substantially harder than in the previous problems. It
might be useful to explore with some concrete values of p to �nd intuition.

5. (*) Further hint: Let v2 (n) denote the largest power of 2 dividing n: for example, we
have v2 (5) = 0, v2 (24) = 3 and v2 (10) = 1. Prove that v2 (p

p−1 − 1) = v2 (p
2 − 1) +

v2 (p− 1)− 1 whenever p ≥ 3 is a prime (in fact, this holds for any odd integer p ≥ 3,
see the previous problem). Conclude that v2 (p

p−1 − 1) ≤ 3 log2 (p)− 1 (weaker bounds
will also be useful, so don't worry if you end up with slightly di�erent expression).

6. Come up with estimates for v2 (b!) (see previous problem), and conclude an upper bound
for b in terms of p.

7. Use these estimates to derive a contradiction when p is su�ciently large.
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