The course comprises two modules: 1. Theory, 5,5 credits. The theoretical part has three sections: A) 3-dimensional structure and function of proteins and nucleic acids at a basic level. B) Structure determination by X-ray crystallography and Nuclear Magnetic Resonance (NMR) spectroscopy, providing both theoretical and practical insights. X-ray crystallography is the most powerful technique currently available for obtaining detailed atomic resolution information of macromolecules. NMRis used for the structural determination of smaller proteins, but the method is also very potent in studies of macromolecules dynamic properties. C) Studies of scientific articles with focus on structural biology. A grant application will be written and orally presented in English. The theoretical parts of the course address the relationship between protein structure and function. The classification system used for proteins and nucleic acids three-dimensional structures will be studied with the aim to give students a good knowledge of various structural motifs in proteins for example alpha helical domain structures, alpha / beta structures, beta sheet structures. The students will also study the structural background of the behavior of multifunctional enzymes, nucleotide-binding enzymes, DNA-recognizing proteins, receptor-proteins, membrane proteins and 2- and 3 dimensional structures of DNA and RNA. The basic mechanisms behind protein folding, factors that determine protein stability and the structural background of macromolecules dynamics are covered. In the context of protein folding, the concept of misfolded proteins and how these can cause disease will be discussed. The course covers basic principles of macromolecular structure determination by X-ray crystallography and NMR. The goal is that the students can read and understand the technical terms in an article describing a crystal or NMR structure. 2. Laboratory work, 2 credits. In the practical part, computer graphics will be used to visualize and study structural topologies of protein and nucleotide structures obtained from public databases. Structural motifs will be identified and conclusions will be drawn about the protein structure and function. The laboratory experiments include crystallization, analysis of protein crystals, and modeling of protein structures into electron density maps at different resolution cut-offs, in addition to exercises to interpret and arrange NMR spectra.
The information below is only for exchange students
Starts
25 March 2025
Ends
1 May 2025
Study location
Umeå
Language
English
Type of studies
Daytime,
100%
Required Knowledge
20 ECTS from completed courses in Chemistry, with a minimum of 5 ECTS in Biochemistry, or alternatively, 20 ECTS from a combination of completed courses in Chemistry and Physics and/or Mathematics, with a minimum of 5 ECTS in Biochemistry; 30 ECTS from completed courses in Biology, containing at least 15 ECTS in Cell and Molecular Biology, and at least 5 ECTS in Molecular Genetics.
Selection
Students applying for courses within a double degree exchange agreement, within the departments own agreements will be given first priority. Then will - in turn - candidates within the departments own agreements, faculty agreements, central exchange agreements and other departmental agreements be selected.
Application code
UMU-A5162
Application
This application round is only intended for nominated exchange students. Information about deadlines can be found in the e-mail instruction that nominated students receive.
The application period is closed.