"False"
Skip to content
printicon
Main menu hidden.

Electrodynamics

  • Number of credits 6 credits
  • Level Bachelor's level
  • Starting Autumn Term 2025

About the course

Content
The aim of the course is to convey in-depth knowledge of electromagnetism. The course starts with a brief rehearsal of the electromagnetism in the static and stationary cases and then the electromagnetic induction is treated with Faraday's law. Maxwell's equations are then studied in the general time-dependent case. Starting from them, the continuity equation and Poynting's theorem, are derived, and their interpretation in terms of charge and energy conservation is discussed. Thereafter, electromagnetic waves are treated in vacuum and in matter, with applications to e.g. electromagnetic waves in waveguides. The course concludes with an introduction to radiation theory, where dipole radiation is treated. In connection with this, the retarded potentials, that are used to determine dipole radiation, are introduced. Electromagnetic problems are modelled and solved using the software Comsol Multiphysics within the laboratory part of the course. The course comprises a theory part of 5 credits and a computer laboratory part of 1 credits.

Expected study results
To fulfil the goals of knowledge and understanding, the student should be able to:

  • explain basic electromagnetic theory in terms of Maxwell's equations and conservation laws in terms of Poynting's theorem
  • describe basic electromagnetic phenomena such as induction and displacement current
  • explain the basic properties of electromagnetic waves in vacuum, in matter and in waveguides.

In order to fulfil the goals for proficiency and ability, the student should be able to:

  • solve electromagnetic problems in central areas such as induction, wave propagation and radiation
  • solve Maxwell's equations with different boundary conditions
  • use the concepts of electromagnetic potentials and retarded potentials to analyse electromagnetic problems
  • use the software Comsol Multiphysics to solve electromagnetic problems numerically.

In order to fulfil the goals for values and critical approach, the student should be able to:

  • show ability to make judgements with regard to scientific and ethical aspects when presenting results in laboratory work.

Forms of instruction
The teaching is conducted in the form of lectures, problem solving sessions, and supervision in computer labs. The labs are compulsory.

Examination
The examination for the course's theoretical part takes place individually in the form of a written exam at the end of the course. For the written examination one of the grades Fail (U), Pass (3), Pass with Merit (4), or Pass with Distinction (5) is set. The examination of the course's laboratory parts is done individually through written reports and oral presentations. For the written reports and oral presentations one of the grades Fail (U) or Pass (G) is set.

For the entire course, one of the grades Fail (U), Pass (3), Pass with Merit (4), or Pass with Distinction (5) is set. To fully pass the course, all parts must be passed. Provided that all passed are passed, the grade on the entire course will be the same as on the theoretical part. Those who have passed an exam can not do another exam in order to get higher grades.

Literature
Griffiths David J.q (David Jeffery)
Introduction to Electrodynamics
3rd ed. : Upper Saddle River, N.J. : Prentice Hall: cop. 1999: 576 p .:
ISBN: 0-13-805326-X

Application and eligibility

Electrodynamics, 6 credits

Visa tillfällen för föregående termin Autumn Term 2025 Det finns inga senare terminer för kursen

The information below is only for exchange students

Starts

1 September 2025

Ends

2 November 2025

Study location

Umeå

Language

English

Type of studies

Daytime, 33%

Required Knowledge

Foundations of Electromagnetics, Waves and Optics or equivalent.

Selection

Students applying for courses within a double degree exchange agreement, within the departments own agreements will be given first priority. Then will - in turn - candidates within the departments own agreements, faculty agreements, central exchange agreements and other departmental agreements be selected.

Application code

UMU-A5320

Application

This application round is only intended for nominated exchange students. Information about deadlines can be found in the e-mail instruction that nominated students receive. The application period is closed.

Contact us

Please be aware that the University is a public authority and that what you write here can be included in an official document. Therefore, be careful if you are writing about sensitive or personal matters in this contact form. If you have such an enquiry, please call us instead. All data will be treated in accordance with the General Data Protection Regulation.

Course is given by
The Department of Physics
Contactperson for the course is:
Michael Bradley