Established by: Rector of Umeå School of Business and Economics, 2018-09-27
Revised by: Dean of Umeå School of Business, Economics and Statistics, 2023-06-22
Contents
Causal inference is the goal of many empirical studies in the health and social sciences. In a causal analysis, a causal parameter is formally defined and the underlying assumptions are explicitly stated. These assumptions clarifies the differences between experimental data and observational data for making causal conclusions. In the course we focus on two dominating approaches for causal analyses, i) the potential outcomes framework and ii) structural analyses (graphical models). We learn the foundations for these two frameworks as well as methods for estimation of causal effects in experimental and observational studies. Data-examples are given throughout the course and practical problem solving and data analyses are carried out in parallel with the theoretical material.
Expected learning outcomes
Knowledge and understanding After a completed course the student should be able to show:
an in-depth knowledge of the potential outcomes framework and use of directed acyclic graphs for causal inference;
an in-depth understanding of assumptions underlying causal analyses with experimental and observational data;
an in-depth knowledge of the presented methods to draw causal inference.
Skills and abilities After a completed course the student should be able to:
apply parametric and non/semi-parametric estimators of causal effects and understand the corresponding underlying assumptions;
perform causal analyses with statistical software.
Ability to evaluate and approach After a completed course the student should be able to:
evaluate the plausibility of underlying assumptions in experimental and observational studies;
evaluate the sensitivity of a causal effect estimate.
Required Knowledge
Univ: 90 credits (hp) in statistics and/or mathematical statistics, or equivalent. Proficiency in English equivalent to Swedish upper secondary course English B/6
Form of instruction
The course consists of lectures and lessons. There are mandatory assignments where the students shall present their solutions.
Examination modes
The examination partly consists of individual written reports and oral presentations of given assignments. Written reports of assignments should be handed in or presented orally at predetermined dates. The grades for the assignments are: G (Pass), and U (Fail).
The examination also includes an oral exam. The grades for the oral exam are: G (Pass), U (Fail), VG (Pass with distinction).
Grades on the course are awarded when students have passed all examinations in the course. The grade is a comprehensive evaluation of the results of the various parts of the examinations and is not granted until all mandatory tasks have been passed.
A student who has passed an examination is not allowed to take another examination in order to get a higher grade. For students who do not pass, an additional test will be held according to a pre-determined schedule.
A student that has failed an examination on two occasions has a right to have another examiner or grading teacher appointed, unless there are special reasons against it. A written request addressed to the Director of Studies should be made no later than two weeks before the next examination opportunity.
Examinations based on the same course syllabus as the ordinary examinations are guaranteed to be offered up to two years after the date of the student's first registration for the course.
Adaptations Examiners may decide to deviate from the modes of assessment in the course syllabus. Individual adaptation of modes of assessment must give due consideration to the student's needs. The adaptation of modes of assessment must remain within the framework of the intended learning outcomes in the course syllabus. Students who require an adapted examination - and have received a decision on the right to support from the coordinator at the Student Services Office for students with disabilities - must submit a request to the department holding the course no later than 10 days before the examination. The examiner decides on the adaptation of the examination, after which the student will be notified.
Academic credit transfer Academic credit transfers are according to the university credit transfer regulations.
Literature
Valid from:
2023 week 26
Recent developments in the econometrics of program evaluation Imbens G.W., Wooldridge J.M. Included in: Journal of economic literature. Nashville, Tenn. The Assoc. : 1969- : 47 : pages 5-86 : Mandatory
Estimating causal effects for multivalued treatments: a comparison of approaches Linden A., Uysal S.D., Ryan A., Adams J.L. Included in: Statistics in medicine. Chichester : Wiley : 1982- : 35 : pages 534-552 : Mandatory
Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study Lunceford J.K., Davidian M. Included in: Statistics in medicine. Chichester : Wiley : 1982- : 23 : pages 2937-2960 : Mandatory
Causal inference in statistics : a primer Pearl Judea, Glymour Madelyn, Jewell Nicholas P. 2016 : 136 s. : ISBN: 9781119186847 Mandatory Search the University Library catalogue
Rosenbaum P.R. Sensitivity analysis in observational studies Included in: Encyclopedia of statistics in behavioral science Chichester : John Wiley : cop. 2005 : 4 vol. (2208 s.) : pages 1809-1814 : Mandatory
Further papers and book chapters may be included, around 50 pages.